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Abstract: This paper introduces a modified twentieth-order method for solving nonlinear equations that commonly arise in
physicochemical models. The proposed method (is designed to efficiently handle the complex problems that normally occur in
the van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium conditions. The traditional method
has a lower order of convergence and uses higher-order derivatives. However, proposed method has twentieth-order
convergence with only one first derivative used'in each iteration. A detailed convergence order has been carried out to
demonstrate the theoretical order of acecuracy. Various numerical experiments have also been carried out to validate the
performance of the proposed method. The results show the significantly improve the accuracy and taking a smaller number of
iterations, number of function evaluations, and CPU time when applied to nonlinear equations arises in van der Waals equation
for real gases, Planck’s radiation law, and chemical equilibrium conditions and basin of attraction further validate the stability
of proposed method.

Keywords: Nonlinear. Physicochemical Models, lterative Method, Convergence Analysis, Weight Function, Hermite
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1. INTRODUCTION computation, highlighting the importance of higher-order
numerical methods [2]. Many scholars have proposed higher-

One of the key challenges in numerical analysis is solving order methods for solving nonlinear algebraic and

nonlinear equations that arise in engineering problems,
specifically in arises in van der Waals equation for real gases,
Planck’s radiation law, and chemical equilibrium conditions.
Iterative methods, like newton's method, are commonly
employed for this purpose. In this context, this article focuses
on iterative techniques aimed at finding a simple root a, such
that Y(a) =0 and Y'(a) # 0, for a nonlinear equation
Y() = 0[1]. High precision is most significant for numerical

transcendental equations [3-5]. Similarly, a number of
researchers have also introduced a higher-order convergence
optimal method [6-8]. Bracketing/closed method [9-13] have
also have their importance because they have always been
convergent, but their convergence is very slow. So now the
researchers are more intend to introduce higher order method
using weight function techniques [14-16].
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2. DERIVATION

We use the Newton technique [1] as the first step in the
suggested approach.

Gtn)
Voo ®
In the second step of the proposed method, we utilize a variant
of the double Newton method [17] and modify it by

substituting v (s,,) with ' (3¢,,) in this step.

Vn = Hp —

. V) \?| ($vn)
En - V‘n. [1 + (wl(”n)) ] (wl(vn)) (2)
From Equations (1) and (2) we get:
Step 1.v, = 3, — 1/1’(7471)
P Gen) (3)
Y P \?] (o)
Step2.&, = v, [1 + (w,(}{n)) ] (w’wn))

To enhance the accuracy and convergence, introduce the
weight function L see in Thukral [18] in the step 2 of
Equation (3).

Where L = K — 2a + 2ab(a — 1)? + 2a3b? ]

— (1 _ 2 _ 45-1 — ¥ = W' Gen)
AndK = (1 —a®*—-10a*)™", a= o’ oo
We get
Step 1'V‘rl =¥, — lp’(Hn)
P! () (4)
_ _ Y \?] [ v
Step 2.&, =v,, — L [1 + (wr(}fn)) ] (1p’(vn))
And add one more step of newton by using ¥ (¢,,) and
P'(En), W' (En) = h3(8n)
_ _ Y(en)
Step 1va = n = 4G |
_ w(vn) 2 (pow
Step 2.§p =vn — L [1 + w'(un)) ] (w’(wl)) ®)
w(en)

In three-step formula mentioned in Equation (5)-we estimate
Y'(&,) using existing data, thereby. reducing the number of
function evaluations needed per iteration. At the nodes », v,
and &, we have four values.y (30); ¥’ (30), ¥ (v) and Y (§). In
the third step of the iterative scheme in Equation (5), we use
the approximation ¥'(¢) = H; (&) to approximate i using
Hermite's interpolating polynomial of degree 3. This
algorithm takes the following form.
Hy() = ag + a; (. — #) + ay(n — 1) + az(n — »)* (6)
And its derivativenis:
Hy(m)'=a; + 2a,(n — #) + 3a;(n — »)? )
The unknown coefficients will be determined using available
data from the conditions:
Hy(2) = (), Hs3(v)
& H3(0) = 9" ().
Putting n = » into Equations (6) and (7) we get a, = ¥ (x)
and a, = ' (). The coefficients a, and a5 are obtained
from the system of two linear equations formed by using the
remaining two conditions n = v & n = £ in Equation (6) and
we obtain:

=y ), H;(§) =9

_ G=yvr] | v=0plEx] 11
L2 = e | Ene-0 A )(; % v k)
& q. = _VEx __ wlvad P (0)

37T 0 ENE-0 T E-n-n)

By putting the values of a,, a,, a;&n = ¢ in Equation (7)
we get:
H3(§) = 2, ] = Yl vD) + Y[v, §] +
L (e, v] — 9 (00)) (®)
We replace ¥’ (&,,) in third step of Equation (5). by Equation
(8) H;Hermite we get:

YOn)
Step 1.v, = »,, — (};n) )
_ w(vn) 1/1(Vn)
Step2.&, = v, — L [1 + W' (,,")) ] (zp’(vn)) ©
Y(n)
Step 3.0, =&, — B ) J
Now add one more step of newton by using ¥ (o,,) and
Y'(0,)
And finally, we got
., L¥0a
Step 1.v, = x, T
« P(vy) Y(vn)
Step 2.&, = v, =1L [1 + (1/, (;{n)) ] (zp’(vn)) (10)
R 1()
Step 3.0, = &, (&)
Y(on)
Step 4. Hn1 = On — W‘:’n)

Equation (10) is the twentieth-order method with four
function evaluations and three first derivatives.
3. CONVERGENCE ANALYSIS

Theorem: D represents an open interval containing »,
as a first estimate of ¢ € D. Let ¢ € D be a simple root of a
functiony : D © R — R that is suitably differentiable. Under
these conditions, Equation (10) yields Twentieth-order of
convergence and requires only four function evaluations
along with three first derivative calculations in each complete
iteration, with no need for second or higher-order derivatives.
Proof.

The Taylor series expansion for the function ¥ (3¢,) can be
expressed as:

b= D G o = o) +

m=0

, ll)”( )
P'(0)0ty — )+ —— 0t —0)* +
LD (1, - a)3 (11)
. _ (1))
For simplicity, we assume that R, = (k!) w’(a)‘k > 2.
and assume that €, = »,, — o. Thus, we have:
For step one:
&, + Rye2 + Ryel )
= 12
Vo) =y @ (7 LT T) @)
1 + 2Ry, + 3R3e2 +)
! =y’ 13
¥'0m) = ¢'(0) ( 4R,E3 ..+ 21R, 2 (13)
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From Equations (12) and (13):

()
I(’;’;) = R,e? + (2R — 2R2)e3 +

(4R3 — 7R3R, + 3R,)éen + -+ 0(&2Y) (14)

R3R,(3R3 — (7R3 + 1)R, + Ry)el +
R3 R (4R§’ — 2(23R; + 3)R3 + 10R,R3 +) e+
* R3(27R; + 4)R, — 3R3R,

Stepl.v, =, —

SO {9 ot 0(e2Y) (16)
Step2.§, =v, —L*|1 = ) = = o, — ¥lon) _
ep fn Vn * ( + (l,l}’(xn)) > (wr(vn)) Step 4. Hn+1 On P! (on)
. s ) Lastly, the efficiency index of the proposed approach
2 (R ( R3 — (36R3 + 5)R3 + 9R,R; + ) e mentioned in Equation (10) is 1.534127405, the rate of
?\(R3(20R; + 3) — Rs)R, — 2R3R,/ | ™ convergence is twenty, and each iteration requires threefirst
ot 0(e2) (15) derivative evaluations and four function evaluations.
Y(én)
Step 3. =§, —5==
p On fn h3(f)

4. NUMERICAL EXPERIMENT AND DISCUSSION
Problem 1. A chemical equilibrium problem(see [19-21]).

w* — 7.79075%3 + 14.7445%% + 2.511% — 1.674 = 0

Table 1. Numerical results for problem 1 for first four iterations and their abselute function values at », = 0.6.

Root
Method & 1%t jteration 2 jteration 3t jteration 4t jteration
absolute
function value
PM M 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...
[ ()| 3.9356E — 13 2.9239E — 267 7.6755E — 5350 1.8529E — 107001
AL 200 " 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...
[ ()| 5.0042E — 11 1.2188E — 221 6.5800E — 4434 2.9086E — 88679
A2 200 " 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...
[ ()| 2.2287E — 10 5.0928E — 208 7.6768E — 4161 2.8154E — 83217
A3 200 " 0.2777 ... 0.2777 ... 0.2777 ... 0.2777 ...
[ ()| 1.6868E — 10 1.4682E — 210 9.1397E — 4212 6.9775E — 83236

Table 2."Numerical results for the problem 1, error fixed at § = 1 x 105

Method IG N FE CPU Time
PM 0.6 28 2.78 x 10°
Al 20" 0.6 5 35 8.39 x 10°
A2 20" 0.6 5 35 9.56 x 10°
A3 20t 0.6 5 35 1.02 x 10*
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Fig. 1. Graphical Representation of [y)(3)| of Table 1. by
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Problem 1

—=— 'S8

—&— Al 20th
—&— A2 20th
—v— A3 20th

T T T
Ist 2nd 3rd

Iteration

assuming the scale 1 x 103 =1 x 10,

The performance of the PM method in solving problem 1 is evaluated against Al 20™,A2 20, and A3 20™ up to the fourth
iteration. Results presented in Table 1 indicate that PM achieves higher accuracy and faster.convergence, as depicted in Figure
1, which illustrates PM's quicker convergence relative to the other methods. Table 2 provides detailed metrics, showing that
PM requires only 4 iterations and 28 function evaluations, whereas the other methods necessitate 5 iterations and 35
evaluations. Additionally, PM consumes less CPU time to achieve a tolerance of.1 x 105, with Figure 2 reinforcing its superior

CPU Time (in sec)

Problem 1

A3 20rth
A2 20th
Al 20t
B9

4pbeon

v

T T
Sol 1 Sol2

T T
Sol 3 Sol 4

Solution of PM and their counterpart

Fig. 2. CPU time (in sec) versus solution of problem 1 by

the proposed scheme and its counterparts.

CPU time performance compared to alternative methods.

Problem 2. Volume from van der Waals equation (see [8])

Y(x) = 40%3 —95.26535116x%% + 35.28% — 5.6998368

Table 3. Numerical results for problem 2 for first four iterations and their absolute function values at », = 2.5.

Root
&
Method absolute 1%t jteration 2 jteration 3" jteration 4t jteration
functional
value
PM M 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...
[W(0)| 2.7230E — 7 7.3008E — 207 1.3896E — 4996 7.1118E — 119950
Al 201 M 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...
[W(0)| 8.3409E — 5 1.4913E — 118 1.6624E — 2393 1.4603E — 47892
A2 20t M 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...
[W(0)| 4,2265E — 5 8.9428E — 125 2.8928E — 2518 4.5534E — 50388
A3 201 M 1.9707 ... 1.9707 ... 1.9707 ... 1.9707 ...
[ ()| 5.1315E -5 5.3469E — 123 1.2172E — 2482 1.7007E — 49675
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Table 4. Numerical results for problem 2, error fixed at § = 1 x 1075,

Method IG N FE CPU Time
PM 2.5 4 28 7.08 x 10°
Al 20t 2.5 5 35 7.32 x 10°
A2 20" 2.5 5 35 7.94 x 10°
A3 20t 2.5 5 35 7.78 x 10°

Problem 2 Problem 2

8.0+ A3 20
- . & A2 2000
7.9 A AL200
v Py

=10
120
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10-80
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9 4 o

1000
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Fig. 3. Graphical Representation of |y(»)| of Table 3. by Fig.4. CRU time versus the solution of problem 2 with the
assuming the scale 1 x 10° =1 x 107, proposed scheme and its counterparts.

Table 3 shows that PM is more accurate and converges.quickly.than.its counterpart approaches in problem 2. And Table 4
shows the iterations, function evaluations, and CPU time (in seconds), where Al, A2, and A3 need 5 iterations and 35 function
evaluations, whereas PM requires 4 and 28. PM achievesha tolerance of & = 1 x 105 more effectively than comparable
approaches because of its decreased CPU time (in seconds). However, Figures 3 and 4 are graphical representations of Tables
3 and 4, also demonstrating that the proposed method is more accurate.

Problem 3. Planck’s radiation law (see [20,22-25;.27]).
- _ n _
e 1+ s = 0.

Table 5. Numerical results for;problem.3 for first four iterations and their absolute function values at », = —0.5.

Root
&
Method absolute 1%t jteration 2 jteration 3" jteration 4t jteration
functional
value
PM M —5.9344E — 14 —1.6768E — 269 —1.7657E — 5380 —4.9576E — 107600
[W(0)| 4,7475E — 14 4.,7475E — 269 4.7475E — 5380 4.7475E — 107600
AL 201 M —5.4708E — 10 —2.0950E — 187 —9.6359E — 3736 —1.7293E — 74702
[W(0)| 4.3767E — 10 1.6760E — 187 7.7087E — 3736 1.3835E — 74702
A2 20t M —7.6741E — 11 —2.5011E — 205 —2.5011E — 4095 —8.0702E — 81890
[W(0)| 6.1393E — 11 2.0009E — 205 3.6606E — 4095 6.4562E — 81890
A3 201 —1.5682E — 10 —8.2960E — 199 —2.4446E — 3964 —5.9562E — 79275

n
[ ()] 1.2545E - 10 6.6368E — 199 1.9556E — 3964 1.9556E — 79275




Twentieth-Order Method for Nonlinear Physicochemical Models

Table 6. Numerical results for problem 3, error fixed at & = 1 x 10°°.

Method 1G N FE CPU Time
PM —-0.5 4 28 5.18 x 102
Al 20t —-0.5 5 35 5.25 x 102
A2 201 -0.5 5 35 5.20 x 10?
A3 201 -0.5 5 35 5.24 x 10?
—8— 'S8
Problem 3 —e— Al 20th Problem 3 w3200
| —&— A2 20th 526 7 * A2200
IG-10 —v— A3 20th i5 ] . : ;;;mh
1520 T
2 ks ] S
E O
= ka0 PR
£ im0 €50
E 1H-60 2
S 1ET0 E 5211
E w0 £ 520 | o
Z v
= 1E90 .
15100 ) .
1E-110 518 v
1E-120 T T T T A7 T T T T
st md Ard 4t sol 1 Sol 2 Sol 3 ol 4

Iteration Solution of PM and their counterpart

Fig. 5. Graphical Represintation Of_llll)(%)l of\Table 5. By, Fig’'6. CPU time (in sec) versus solution of problem 3 with
assuming the scale 1 x 10~ =1 x 10" the proposed scheme and its counterparts.

Compared to its counterpart approaches in problem 3, PM is more accurate and converges faster, as Table 5 demonstrates.
Additionally, Table 6 displays the CPU time (in,seconds), number of iterations, function evaluations. Al, A2, and A3 require
five iterations and thirty-five function evaluations, while PM needs four and twenty-eight. PM's reduced CPU time (in seconds)
allows it to achieve a tolerance of &:=1 x 10-%;more efficiently than similar methods. Figures 3 and 4, on the other hand, are
graphical depictions of Tables 5.and.6, further proving the validity of the suggested approach.

The visuals show that PM is more accurate, efficient, and consistent than alternative approaches.
5. BASIN OF ATTARCTION

The stability of the solutions (roots) for the nonlinear function ¥ (%) = 0.The concept of basins of attraction can be used to
facilitate an iterative method [26]. MATLAB R2014a was used to generate a depiction of all basins within the range R =
[-5 %.5] x [=5 x 5], with a total of 360,000 points at a 600 x 600 density. There were two criteria established: An error
thresholdof 1 x 1071° or a maximum iteration count of 10. Each point in the R-range served as the starting condition for the
iterative algorithms that are initiated.

Problem 4. Below problems were taken from the literature [26].

S.No  Functions (P(x)) Roots (x, : k =1,2,3,...)
305 855 . 1292 4456 .
1 Pi(x) =x°+1 Y= Lm0t ee b Teer T 7sert
2. Py(x)=x*+1 X =1, L izﬁl
1 -2+
3. P3(x)=x2+2x—§ x,(:#\/g
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Fig. 7. The left Figures shows roots, while the right Figures. shows the'number.of iterations at each initial point of P, (x) of

problems 4 obtained by the proposed Twentieth-order method:

The iterative algorithm assigned a unique color number_k (other than black) to the initial point if the sequence converged to a
root x; of the polynomial B,(x) of degree k within 10 iterations and a predetermined tolerance. On the other hand, if the
iterative process started at a point x € C and surpassed the maximum iteration limit of 10 without converging to any root x,, or
converged to a different value p such that |[p —x*| < 1 x 10710, the starting point was classified as diverging. In these
instances, the starting point was marked with the color black. The number of iterations for each point in another basin is

represented, accompanied by a color scale for reference:

The visual representations presented above shew that PM has significantly higher stability than alternative methods.

6. CONCLUSIONS 8.

The proposed fourth stepsthe twenty-order method based on 1.

the weight function, is introduced forthe solution of nonlinear
equations arising in‘Physicochemical Models. In conclusion,

we have derived the convergence order (theoretical) of the 2,

proposed method, various application problems from the
Physicochemical Models have been tested and compared with
counterparts;Al, A2, and A3. In all cases proposed method
outperforms existing methods in terms of accuracy, number of
iterations, number of function evaluations, and CPU time.

Furthermore, the Basin of attraction in the complex plane 4.

confirms the stability of the proposed method.
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