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Abstract: This paper introduces a modified twentieth-order method for solving nonlinear equations that commonly arise in 

physicochemical models. The proposed method is designed to efficiently handle the complex problems that normally occur in 

the van der Waals equation for real gases, Planck’s radiation law, and chemical equilibrium conditions. The traditional method 

has a lower order of convergence and uses higher-order derivatives. However, proposed method has twentieth-order 

convergence with only one first derivative used in each iteration. A detailed convergence order has been carried out to 

demonstrate the theoretical order of accuracy. Various numerical experiments have also been carried out to validate the 

performance of the proposed method. The results show the significantly improve the accuracy and taking a smaller number of 

iterations, number of function evaluations, and CPU time when applied to nonlinear equations arises in van der Waals equation 

for real gases, Planck’s radiation law, and chemical equilibrium conditions and basin of attraction further validate the stability 

of proposed method. 
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1. INTRODUCTION 

One of the key challenges in numerical analysis is solving 

nonlinear equations that arise in engineering problems, 

specifically in arises in van der Waals equation for real gases, 

Planck’s radiation law, and chemical equilibrium conditions. 

Iterative methods, like newton's method, are commonly 

employed for this purpose. In this context, this article focuses 

on iterative techniques aimed at finding a simple root 𝑎, such 

that 𝜓(𝑎) = 0 and 𝜓′(𝑎) ≠ 0, for a nonlinear equation 

𝜓(𝜘) = 0 [1]. High precision is most significant for numerical 

computation, highlighting the importance of higher-order 

numerical methods [2]. Many scholars have proposed higher-

order methods for solving nonlinear algebraic and 

transcendental equations [3-5]. Similarly, a number of 

researchers have also introduced a higher-order convergence 

optimal method [6-8]. Bracketing/closed method [9-13] have 

also have their importance because they have always been 

convergent, but their convergence is very slow. So now the 

researchers are more intend to introduce higher order method 

using weight function techniques [14-16]. 

mailto:sanaullah.jamali@usindh.edu.pk


Twentieth-Order Method for Nonlinear Physicochemical Models 

 2  
 

2. DERIVATION 

We use the Newton technique [1] as the first step in the 

suggested approach. 

𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
    (1) 

In the second step of the proposed method, we utilize a variant 

of the double Newton method [17] and modify it by 

substituting 𝜓(𝜘𝑛) with 𝜓′(𝜘𝑛) in this step. 

𝜉𝑛 = 𝜈𝑛 − [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)      (2) 

From Equations (1) and (2) we get: 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
                                

Step2. 𝜉𝑛 = 𝜈𝑛 − [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)
}            (3) 

To enhance the  accuracy and convergence, introduce  the 

weight function 𝐿 see in Thukral [18] in the step 2 of 

Equation (3). 

Where 𝐿 = 𝐾 − 2𝑎 + 2𝑎𝑏(𝑎 − 1)2 + 2𝑎3𝑏−1                

And 𝐾 = (1 − 𝑎2 − 10𝑎4 )−1,    𝑎 =
𝜓(𝜈𝑛)

𝜓(𝜘𝑛)
 ,   𝑏 =

𝜓′(𝜘𝑛)

𝜓′(𝜈𝑛)

}  

We get 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
                                  

Step 2. 𝜉𝑛 = 𝜈𝑛 − 𝐿 [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)
}       (4) 

And add one more step of newton by using 𝜓(𝜉𝑛) and 

ψ′(ξn), ψ
′(ξn) ≈ h3

′ (ξn) 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
                                   

Step 2. 𝜉𝑛 = 𝜈𝑛 − 𝐿 [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)

Step 3. 𝜊𝑛 = 𝜉𝑛 −
𝜓(𝜉𝑛)

𝜓′(𝜉𝑛)
                                   }

 
 

 
 

        (5) 

In three-step formula mentioned in Equation (5) we estimate 

𝜓′(𝜉𝑛) using existing data, thereby reducing the number of 

function evaluations needed per iteration. At the nodes 𝜘, 𝑣, 

and 𝜉, we have four values 𝜓(𝜘), 𝜓′(𝜘), 𝜓(𝑣) and 𝜓(𝜉). In 

the third step of the iterative scheme in Equation (5), we use 

the approximation 𝜓′(𝜉)  ≈ 𝐻3
′ (𝜉) to approximate 𝜓 using 

Hermite's interpolating polynomial of degree 3. This 

algorithm takes the following form. 

𝐻3(𝜂) = 𝑎0 + 𝑎1(𝜂 − 𝜘) + 𝑎2(𝜂 − 𝜘)
2 + 𝑎3(𝜂 − 𝜘)

3  (6) 

And its derivative is: 

𝐻3
′ (𝜂) = 𝑎1 + 2𝑎2(𝜂 − 𝜘) + 3𝑎3(𝜂 − 𝜘)

2        (7) 

The unknown coefficients will be determined using available 

data from the conditions: 

𝐻3(𝜘) = 𝜓(𝜘),     𝐻3(𝑣) = 𝜓(𝑣),     𝐻3(𝜉) = 𝜓(𝜉)      

&     𝐻3
′ (𝜘) = 𝜓′(𝜘). 

Putting 𝜂 = 𝜘 into Equations (6) and (7) we get 𝑎0 = 𝜓(𝜘) 

and 𝑎1 = 𝜓′(𝜘). The coefficients 𝑎2 and 𝑎3 are obtained 

from the system of two linear equations formed by using the 

remaining two conditions 𝜂 = 𝜈 & 𝜂 = 𝜉 in Equation (6) and 

we obtain: 

𝑎2 =
(𝜉−𝜘)𝜓[𝑣,𝜘]

(𝜉−𝑣)(𝑣−𝜘)
−

(𝜈−𝜘)𝜓[𝜉,𝜘]

(𝜉−𝑣)(𝜈−𝜘)
− 𝜓′(𝜘) (

1

𝜉−𝜘
−

1

𝜈−𝜘
)  

&   𝑎3 =
𝜓[𝜉,𝜘]

(𝜉−𝑣)(𝜉−𝜘)
−

𝜓[𝜈,𝜘]

(𝜉−𝜈)(𝜈−𝜘)
+

𝜓′(𝜘)

(𝜉−𝜘)(𝜈−𝜘)
  

By putting the values of 𝑎1, 𝑎2, 𝑎3& 𝜂 = 𝜉 in Equation (7) 

we get: 

𝐻3
′ (𝜉) = 2(𝜓[𝜘, 𝜉] − 𝜓[𝜘, 𝜈]) + 𝜓[𝜈, 𝜉] + 

𝜈−𝜉

𝑣−𝜘
(𝜓[𝜘, 𝜈] − 𝜓′(𝜘))       (8) 

We replace 𝜓′(𝜉𝑛) in third step of Equation (5) by Equation 

(8) 𝐻3Hermite we get: 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
                                   

Step 2. 𝜉𝑛 = 𝜈𝑛 − 𝐿 [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)

Step 3. 𝜊𝑛 = 𝜉𝑛 −
𝜓(𝜉𝑛)

ℎ3
′ (𝜉𝑛)

                                     }
 
 

 
 

  (9) 

Now add one more step of newton by using 𝜓(𝜊𝑛) and 

𝜓′(𝜊𝑛) 
And finally, we got 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
                                    

Step 2. 𝜉𝑛 = 𝜈𝑛 − 𝐿 [1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝒏)
)
2

] (
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
)

Step 3. 𝜊𝑛 = 𝜉𝑛 −
𝜓(𝜉𝑛)

ℎ3
′ (𝜉𝑛)

                                     

Step 4. 𝜘𝑛+1 = 𝜊𝑛 −
𝜓(𝜊𝑛)

𝜓′(𝜊𝑛)
                                }

 
 
 

 
 
 

         (10) 

Equation (10) is the twentieth-order method with four 

function evaluations and three first derivatives. 

3. CONVERGENCE ANALYSIS 

Theorem: 𝐷 represents an open interval containing 𝜘0 

as a first estimate of 𝜎 ∈ 𝐷. Let 𝜎 ∈ 𝐷 be a simple root of a 

function 𝜓 ∶ 𝐷 ⊂ 𝑅 → 𝑅 that is suitably differentiable. Under 

these conditions, Equation (10) yields Twentieth-order of 

convergence and requires only four function evaluations 

along with three first derivative calculations in each complete 

iteration, with no need for second or higher-order derivatives. 

Proof. 

The Taylor series expansion for the function 𝜓(𝜘𝑛) can be 

expressed as: 

𝜓(𝜘𝑛) = ∑
𝜓𝑚(𝜎)

𝑚!
(𝜘𝑛 − 𝜎)

𝑚

∞

𝑚=0

= 𝜓(𝜎) + 

𝜓′(𝜎)(𝜘𝑛 − 𝜎) +
𝜓′′(𝜎)

2!
(𝜘𝑛 − 𝜎)

2 + 

𝜓′′′(𝜎)

3!
(𝜘𝑛 − 𝜎)

3 +⋯                         (11) 

For simplicity, we assume that 𝑅𝑘  = (
1

𝑘!
)
𝜓𝑘(𝜎)

𝜓′(𝜎)
, 𝑘 ≥  2.  

and assume that 𝜀𝑛 = 𝜘𝑛 − 𝜎. Thus, we have: 

For step one: 

𝜓(𝜘𝑛) = 𝜓
′(𝜎) (

𝜀𝑛 + 𝑅2𝜀𝑛
2 + 𝑅3𝜀𝑛

3 +

𝑅4𝜀𝑛
4 +⋯+ 𝑅21𝜀𝑛

21 )     (12) 

𝜓′(𝜘𝑛) = 𝜓
′(𝜎) (

1 + 2𝑅2𝜀𝑛 + 3𝑅3𝜀𝑛
2 +

4𝑅4𝜀𝑛
3…+ 21𝑅21𝜀𝑛

20 )           (13) 
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From Equations (12) and (13): 

Step 1. 𝜈𝑛 = 𝜘𝑛 −
𝜓(𝜘𝑛)

𝜓′(𝜘𝑛)
= 𝑅2𝜀𝑛

2 + (2𝑅3 − 2𝑅2
2)𝜀𝑛

3 + 

(4𝑅2
3 − 7𝑅3𝑅2 + 3𝑅4)𝜀𝑛

4 +⋯+ 𝑂(𝜀𝑛
21)          (14) 

 

𝐒𝐭𝐞𝐩 𝟐. 𝜉𝑛 = 𝜈𝑛 − 𝐿 ∗ (1 + (
𝜓(𝜈𝑛)

𝜓′(𝜘𝑛)
)

2

)(
𝜓(𝜈𝑛)

𝜓′(𝜈𝑛)
) = 

𝑅2
2(3𝑅2

3 − (7𝑅3 + 1)𝑅2 + 𝑅4)𝜀𝑛
6 − 

2(𝑅2 (
𝑅2
5 − (36𝑅3 + 5)𝑅2

3 + 9𝑅4𝑅2
2 +

(𝑅3(20𝑅3 + 3) − 𝑅5)𝑅2 − 2𝑅3𝑅4
)) 𝜀𝑛

7 + 

…+ 𝑂(𝜀𝑛
21)           (15) 

Step 3.  𝜊𝑛 = 𝜉𝑛 −
𝜓(𝜉𝑛)

ℎ3
′ (𝜉)

= 

𝑅2
3𝑅4(3𝑅2

3 − (7𝑅3 + 1)𝑅2 + 𝑅4)𝜀𝑛
11 + 

𝑅2
2 (

2𝑅2(3𝑅2
3 − (7𝑅3 + 1)𝑅2 + 2𝑅4)𝑅5 −

2𝑅4 (
4𝑅2

5 − 2(23𝑅3 + 3)𝑅2
3 + 10𝑅4𝑅2

2 +

𝑅3(27𝑅3 + 4)𝑅2 − 3𝑅3𝑅4
)
) 𝜀𝑛

12 + 

…+ 𝑂(𝜀𝑛
21)         (16) 

Step 4. 𝜘𝑛+1 = 𝑜𝑛 −
𝜓(𝜊𝑛)

𝜓′(𝑜𝑛)
= 

𝑅2
7𝑅4

2(3𝑐2
3 − (7𝑅3 + 1)𝑅2 + 𝑅4)

2𝜀𝑛
20 + 𝑂(𝜀𝑛

21)  (17) 

Lastly, the efficiency index of the proposed approach 

mentioned in Equation (10) is 1.534127405, the rate of 

convergence is twenty, and each iteration requires three first 

derivative evaluations and four function evaluations. 

 

 

 

4. NUMERICAL EXPERIMENT AND DISCUSSION  

Problem 1. A chemical equilibrium problem(see [19-21]). 

𝜘4 −  7.79075𝜘3 + 14.7445𝜘2 + 2.511𝜘 − 1.674 =  0  

 

 

Table 1. Numerical results for problem 1 for first four iterations and their absolute function values at 𝜘0 = 0.6. 

Method 

Root 

& 

absolute 

function value 

1st iteration 2nd iteration 3rd iteration 4th iteration 

PM 
 𝜘 

|𝜓(𝜘)| 
0.2777… 

3.9356E − 13 

0.2777… 

2.9239E − 267 

0.2777… 

7.6755E − 5350 

0.2777… 

1.8529E − 107001 

A1 20th  
𝜘 
|𝜓(𝜘)| 

0.2777… 

5.0042E − 11 

0.2777… 

1.2188E − 221 

0.2777… 

6.5800E − 4434 

0.2777… 

2.9086E − 88679 

A2 20th  
𝜘 
|𝜓(𝜘)| 

0.2777… 

2.2287E − 10 

0.2777… 

5.0928E − 208 

0.2777… 

7.6768E − 4161 

0.2777… 

2.8154E − 83217 

A3 20th  
𝜘 
|𝜓(𝜘)| 

0.2777… 

1.6868E − 10 

0.2777… 

1.4682E − 210 

0.2777… 

9.1397E − 4212 

0.2777… 

6.9775E − 83236 

 

 

Table 2. Numerical results for the problem 1, error fixed at 𝛿 = 1 × 10-5. 

Method 𝐈𝐆 𝐍 𝐅𝐄 𝐂𝐏𝐔 𝐓𝐢𝐦𝐞 

PM
 

0.6 4 28 2.78 × 100 

A1 20th 0.6 5 35 8.39 × 100 

A2 20th 0.6 5 35 9.56 × 100 

A3 20th 0.6 5 35 1.02 × 101 
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Fig. 1. Graphical Representation of |𝜓(𝜘)| of Table 1. by 

assuming the scale 1 × 10-3 = 1 × 10-1.  
Fig. 2. CPU time (in sec) versus solution of problem 1 by 

the proposed scheme and its counterparts. 

 

The performance of the PM method in solving problem 1 is evaluated against A1 20th, A2 20th, and A3 20th up to the fourth 

iteration. Results presented in Table 1 indicate that PM achieves higher accuracy and faster convergence, as depicted in Figure 

1, which illustrates PM's quicker convergence relative to the other methods. Table 2 provides detailed metrics, showing that 

PM requires only 4 iterations and 28 function evaluations, whereas the other methods necessitate 5 iterations and 35 

evaluations. Additionally, PM consumes less CPU time to achieve a tolerance of 1 × 10-5, with Figure 2 reinforcing its superior 

CPU time performance compared to alternative methods. 

 

Problem 2. Volume from van der Waals equation (see [8]) 

𝜓(𝜘) = 40𝜘3 − 95.26535116𝜘2 + 35.28𝜘 − 5.6998368 

 

Table 3. Numerical results for problem 2 for first four iterations and their absolute function values at 𝜘0 = 2.5. 

 

 

 

 

 

 

Method 

Root  

& 

absolute  

functional 

value 

1st iteration 2nd iteration 3rd iteration 4th iteration 

PM 
 𝜘 

|𝜓(𝜘)| 
1.9707… 

2.7230E − 7 

1.9707… 

7.3008E − 207 

1.9707… 

1.3896E − 4996 

1.9707… 

7.1118E − 119950 

A1 20th  
𝜘 
|𝜓(𝜘)| 

1.9707… 

8.3409E − 5 

1.9707… 

1.4913E − 118 

1.9707… 

1.6624E − 2393 

1.9707… 

1.4603E − 47892 

A2 20th  
𝜘 
|𝜓(𝜘)| 

1.9707… 

4.2265E − 5 

1.9707… 

8.9428E − 125 

1.9707… 

2.8928E − 2518 

1.9707… 

4.5534E − 50388 

A3 20th  
𝜘 
|𝜓(𝜘)| 

1.9707… 

5.1315E − 5 

1.9707… 

5.3469E − 123 

1.9707… 

1.2172E − 2482 

1.9707… 

1.7007E − 49675 
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Table 4. Numerical results for problem 2, error fixed at 𝛿 = 1 × 10-5. 

 

 

Fig. 3. Graphical Representation of |𝜓(𝜘)| of Table 3. by 

assuming the scale 1 × 10-3 = 1 × 10-1. 

 

 

Fig. 4. CPU time versus the solution of problem 2 with the 

proposed scheme and its counterparts. 

Table 3 shows that PM is more accurate and converges quickly than its counterpart approaches in problem 2. And Table 4 

shows the iterations, function evaluations, and CPU time (in seconds), where A1, A2, and A3 need 5 iterations and 35 function 

evaluations, whereas PM requires 4 and 28. PM achieves a tolerance of δ = 1 × 10-5 more effectively than comparable 

approaches because of its decreased CPU time (in seconds). However, Figures 3 and 4 are graphical representations of Tables 

3 and 4, also demonstrating that the proposed method is more accurate. 

Problem 3. Planck’s radiation law (see [20, 22-25, 27]). 

   

𝑒−𝜘 −  1 +
𝜘

5
 =  0. 

 

Table 5. Numerical results for problem 3 for first four iterations and their absolute function values at 𝜘0 = −0.5. 

 

Method 𝐈𝐆 𝐍 𝐅𝐄 𝐂𝐏𝐔 𝐓𝐢𝐦𝐞 

PM 
 

2.5 4 28 7.08 × 100 

A1 20th  2.5 5 35 7.32 × 100 

A2 20th  2.5 5 35 7.94 × 100 

A3 20th  2.5 5 35 7.78 × 100 

Method 

Root  

&  

absolute 

functional 

value 

1st iteration 2nd iteration 3rd iteration 4th iteration 

PM 
 𝜘 

|𝜓(𝜘)| 
−5.9344E − 14 
4.7475E − 14 

−1.6768E − 269 
4.7475E − 269 

−1.7657E − 5380 
4.7475E − 5380 

−4.9576E − 107600 
4.7475E − 107600 

A1 20th  
𝜘 

|𝜓(𝜘)| 
−5.4708E − 10 
4.3767E − 10 

−2.0950E − 187 
1.6760E − 187 

−9.6359E − 3736 
7.7087E − 3736 

−1.7293E − 74702 
1.3835E − 74702 

A2 20th  
𝜘 

|𝜓(𝜘)| 
−7.6741E − 11 
6.1393E − 11 

−2.5011E − 205 
2.0009E − 205 

−2.5011E − 4095 
3.6606E − 4095 

−8.0702E − 81890 
6.4562E − 81890 

A3 20th  
𝜘 

|𝜓(𝜘)| 
−1.5682E − 10 

1.2545E − 10 

−8.2960E − 199 

6.6368E − 199 

−2.4446E − 3964 

1.9556E − 3964 

−5.9562E − 79275 

1.9556E − 79275 
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Table 6. Numerical results for problem 3, error fixed at δ = 1 × 10-5. 

Method 𝐈𝐆 𝐍 𝐅𝐄 𝐂𝐏𝐔 𝐓𝐢𝐦𝐞 

PM 
 

−0.5 4 28 5.18 × 102 

A1 20th  −0.5 5 35 5.25 × 102 

A2 20th  −0.5 5 35 5.20 × 102 

A3 20th  −0.5 5 35 5.24 × 102 

 

Fig. 5. Graphical Representation of |𝜓(𝜘)| of Table 5. by 

assuming the scale 1 × 10-3 = 1 × 10-1.  

 

Fig. 6. CPU time (in sec) versus solution of problem 3 with 

the proposed scheme and its counterparts. 

Compared to its counterpart approaches in problem 3, PM is more accurate and converges faster, as Table 5 demonstrates. 

Additionally, Table 6 displays the CPU time (in seconds), number of iterations, function evaluations. A1, A2, and A3 require 

five iterations and thirty-five function evaluations, while PM needs four and twenty-eight. PM's reduced CPU time (in seconds) 

allows it to achieve a tolerance of δ = 1 × 10-5 more efficiently than similar methods. Figures 3 and 4, on the other hand, are 

graphical depictions of Tables 5 and 6, further proving the validity of the suggested approach. 

The visuals show that PM is more accurate, efficient, and consistent than alternative approaches. 

5. BASIN OF ATTARCTION 

The stability of the solutions (roots) for the nonlinear function 𝜓(𝜘) = 0.The concept of basins of attraction can be used to 

facilitate an iterative method [26].  MATLAB R2014a was used to generate a depiction of all basins within the range 𝑅 =

[−5 × 5] × [−5 × 5], with a total of 360,000 points at a 600 × 600 density.  There were two criteria established: An error 

threshold of 1 × 10−10 or a maximum iteration count of 10.  Each point in the R-range served as the starting condition for the 

iterative algorithms that are initiated. 

Problem 4. Below problems were taken from the literature [26]. 

S. No Functions (𝑷(𝒙)) Roots (𝑥𝑘 ∶ 𝑘 = 1, 2, 3, … ) 

1. 𝑃1(𝑥) = 𝑥5 + 1 𝑥𝑘 = −1,−
305

987
±

855

899
𝑖,

1292

1597
±

4456

7581
𝑖  

2. 𝑃2(𝑥) = 𝑥3 + 1 𝑥𝑘 = 1,
1 ± √3𝑖

2
 

3. 𝑃3(𝑥) = 𝑥2 + 2𝑥 −
1

2
 𝑥𝑘 =

−2 ± √6

2
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4. 𝑃4(𝑥) = 𝑥
4 +

1

64
 𝑥𝑘 =

1 ± 1𝑖

4
,
−1 ± 1𝑖

4
 

5. 𝑃5(𝑥) = 𝑥5 −
1

2
𝑖𝑥4 +

1

64
𝑥 −

1

128
𝑖 𝑥𝑘 =

1 ± 1𝑖

4
,
−1 ± 1𝑖

4
,
1

2
𝑖 

6. 𝑃6(𝑥) = 𝑥2 −
1

4
 𝑥𝑘 =

1

2
,−
1

2
 

 

 

Basin of 

attraction 

of 𝑷𝟏(𝒙) 
 

 

 

Basin of 

attraction 

of 𝑷𝟐(𝒙) 

 

 

Basin of 

attraction 

of 𝑷𝟑(𝒙) 

 

 

Basin of 

attraction 

of 𝑷𝟒(𝒙) 
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Basin of 

attraction 

of 𝑷𝟓(𝒙) 

 

 

Basin of 

attraction 

of 𝑷𝟔(𝒙) 

 

Fig. 7. The left Figures shows roots, while the right Figures. shows the number of iterations at each initial point of  𝑃𝑛(𝑥) of 

problems 4 obtained by the proposed Twentieth-order method. 

The iterative algorithm assigned a unique color number 𝑘 (other than black) to the initial point if the sequence converged to a 

root 𝑥𝑘
∗  of the polynomial 𝑃𝑛(𝑥) of degree 𝑘 within 10 iterations and a predetermined tolerance. On the other hand, if the 

iterative process started at a point 𝑥 ∈ 𝐶 and surpassed the maximum iteration limit of 10 without converging to any root 𝑥𝑘 or 

converged to a different value 𝑝 such that |𝑝 − 𝑥∗| < 1 × 10−10, the starting point was classified as diverging. In these 

instances, the starting point was marked with the color black. The number of iterations for each point in another basin is 

represented, accompanied by a color scale for reference. 

The visual representations presented above show that PM has significantly higher stability than alternative methods.

 

6. CONCLUSIONS 

The proposed fourth step, the twenty-order method based on 

the weight function, is introduced for the solution of nonlinear 

equations arising in Physicochemical Models. In conclusion, 

we have derived the convergence order (theoretical) of the 

proposed method, various application problems from the 

Physicochemical Models have been tested and compared with 

counterparts A1, A2, and A3. In all cases proposed method 

outperforms existing methods in terms of accuracy, number of 

iterations, number of function evaluations, and CPU time. 

Furthermore, the Basin of attraction in the complex plane 

confirms the stability of the proposed method.  
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